Wavelet Spectrum Analysis
and Ocean Wind Waves

Paul C. Liu

Abstract. Wavelet spectrum analysis is applied to a set.of measured ocean wind
waves data collected during the 1990 SWADE {Surface Wave Dynamics Experi-
ment) program. The results reveal significantly new and previously unexplored
insights on wave grouping parameterizations, phase relations during wind wave
growth, and detecting wave breaking characteristics. These insights are due to
the nature of the wavelet transform that would not be immediately evident using
a traditional Fourier transform approach.

§1. Introduction

Ever since Willard J. Pierson [18] adopted the works of John W. Tukey
[22] and introduced the power spectrum analysis to ocean wave studies,
Fourier spectrum analysis has been successfully and persistently used in
data analysis of wind-generated ocean waves. Over the past four decades,
with the increased availability of new instruments for measuring wind and
waves, spectrum analysis has continued to be the fundamental standard
procedure used for analyzing wind and wave data.

Fourier spectrum analysis generally provides frequency information
about the energy content of measured, and presumed stationary, time-
series data. Characteristic properties of waves such as total energy and
dominant or average frequency can be readily derived from the estimated
spectrum. This information, however, pertains only to the time span of
the measured data. Changes and variations within a time series cannot be
easily unraveled. As stationarity in the data simply represents a mathe-
matical idealization, its validity is usually regarded as an approximation of
the real wave field. The effectiveness of applying Fourier spectrum analysis
to a rapidly changing wave field, such as during wave growth or decay, is
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uncertain. The emergence of wavelet transform analysis which can yield
localized time-frequency information without requiring that the time-series
be stationary has presented a rewarding and complementary approach to
the traditional Fourier spectrum analysis and has advanced significant new
perspectives for improved wave data analysis.

While wavelet analysis has been widely recognized as a revolutionary
approach applicable to many fields of studies, the application of wavelet
transform to wind wave data analysis is still in its infancy. This article
mainly presents the author’s own attempt at understanding wind-generated
waves using the wavelet decomposition.

§2. Wavelet Spectrum

Following a standard formulation [3], we briefly summarize the wavelet
transform. We start with a family of functions, the so-called analyzing
wavelets, ¥q(t), that are generated by dilations a and translations b from
a mother wavelet, 1)(t), as

1 t—b

wab(t) = ﬁd)( a

wherea > 0, —00 < b < 400, and f_+o°: ¥(t)dt = 0. The continuous wavelet
transform of a time-series, X (t), is then defined as the inner product of ¢4
and X as

) - (1)

X(a,b) =< thap, X >= t)y* (—) (2)

Tl

or equi.valently in terms of their corresponding Fourier transforms

+ o0 . . .
=Vial | X(@)p*(aw)e™dv (3)

where an asterisk superscript indicates the complex conjugate. In essence
the wavelet transform takes a one-dimensional function of time into a two-
dimensional function of time and scale (or equivalently, frequency).

In practical applications, the wavelets can be conveniently discretized
by setting a = 2° and b = 72° in octaves [4] to obtain

or(t) = 27 2p(27%t — 7), (4)

where s and 7 are integers. Then the continuous wavelet transforms (2)
and (3) for time series data X(t) become

+-00

X(s,7) = ] X(t)d;*(% )i (5)°
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and
+ oo

X(s,7)=2%* X(Z“"w)l/‘)‘(w)e”zs“’dw. (6)
— 00
In general, the studies of wavelet transforms and wavelet analysis are
centered on two basic questions [4]: (1) Do the wavelet coefficients com-
pletely characterize the time-series data? (2) Can the original time series
be reconstructed from the wavelet coefficients? The answers to both of
these questions are clearly yes as evidenced by the voluminous literature
in recent years. In this paper we rely on the affirmative answer to the first
question and concentrate on cxploring the wavelet transform of measured
wind waves. It is an exciting and fruitful area for practical application of
the wavelet transform . As data analysis on wind wave studics comprises
mainly of applications of statistics and Fourier transforms, the summary
shown in Table 1 indicates that wavelet transform analysis is a logical ex-
tension to the currently available analyses.
In analogy with Fourier energy density spectrum, we can readily define
a wavelet spectrum for a data series X (t) as

Wx(s,7) = X(s,7)X"(s,7) = | X(s,7)*. (7)

There are other designations in the literature for Wx (s, 7) {21]. Results
from the application of short-time Fourier transforms have been called spec-
trograms, whereas results from the application of wavelet transforms have
been called scalograms. Since in practice the scale, s, and translation,
7, can be associated with a corresponding frequency, w, and time, t, (7)
can be considered as a representation of the time-varying, localized energy
spectrum for a given time series.

We can similarly define a cross wavelet spectrum for the study of two
simultaneously measured data sets X (t) and Y(t) as

Wxy(s,7) = X(s,7)Y*(s,7) (8

and accordingly,
— ny (s, T)
\/7WX|= (S, T)WYk (S, T)

(s, 7) (9)

and
[RWxy (s, 7)) + [SWxy (s,7)]°
ka (sa T)WYk (S, T)

as the complex-valued wavelet coherency and its square, the real valued
wavelet coherence, respectively, between the two data sets. The functions
RWxy(s,7) and SWxy(s,7) in (10) are respectively the real and imagi-
nary parts of Wxy (s, 7), and hence the co- and quadrature- wavelet spectra

of X(t) and Y (t).

I(s,7) = (10)
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Table 1. Analogy of statistics, Fourier transform and wavelet transform

analysis.
Statistics Fourier Transform Wavelet Transform
Variance Frequency Spectrum Wavelet Spectrum
~A A ~ 2 ~ ~ 2
E(X?) Sy(w)=XX*=|X]| | Wx(s,7)=XX"=]|X]|
Covariance Cross Spectrum Cross Wavelet Spectrum
E(XY) Sxy(w) = XY* Wxy(s,7) = XY~
Coefficient, of Coherency Wavelet Coherency
Correlation
—_ E(XY) 7 _— Sxy(w) — ny(s,r)
E(X)}E(Y) Sx(w)Sy (w) VWx(s,7)Wy(s,7)
Coefficient of Coherence Wavelet Coherence
Determination
7.2 _ [B(xY))? 2 .. xy(w : 1'\2 — [W’XY(S‘T)]2
= EXOE(Y) T S (@)Sy (@) = Wx(s,)Wy (5,7)

In implementing the applications, there are a number of well-defined
continuous wavelet forms available [6]. In this study we choose to use
the complex-valued, modulated Gaussian analyzing wavelet known as the
Morlet wavelet. This wavelet, originally proposed by Morlet et al. [16],
ushered in the present wavelet era and is given by

l/J(t) — eirntevt7/2_

Its Fourler transform is

(11)

lﬁ!(w) = V2re~lemm?/z (12)
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Here we should point out that this wavelet is not an admissible wavelet
since a correction term is needed because @[)(()) # 0. However, in prac-
tice choice of a large enough value for the parameter m, (e.g. m > 5)
cnerally renders the correction term negligible. In this study, we follow
Daubechics [5] and use m = m/2/In2. While there are admissible wavelets
available, the Morlet wavelet has been widely used in signal analysis and
sound pattern studies. Aside from its convenient formulation and histori-
cal significance, its localized frequency is independent of time, a feature of
particular advantage for wind wave studies.
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Figure 1. A sample plot of a time series of wind waves and its respec-
tive wavelet spectrum.

§3. Applications

In the following three subsections we present three wavelet transform
analyses of wind wave data leading to distinct results that would be dif-
ficult, if not impossible, to obtain from the usual Fourier transform. The
data used in the applications were measured during the recent SWADE
(Surface Wave Dynamics Experiment) program [25]. The wind and wave
data were recorded from a 3 m discus buoy during the severe storm of Oc-
tober 26, 1990. The buoy was located at latitude 38°22.1’ N and longitude
73°38.9' W, with a water depth of 115 m near the edge of the continental
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shelf offshore of Virginia in the Atlantic Ocean. Time series of wind and
waves were both recorded at 1 Hz from a combined design of a three-axis
accelerometer and magnetometer along with the Datawell Hippy system.
A total of 100 sets of data, each 1024 s in length, were used in the anal-
yses. The data, predominantly wind-generated waves, covered the entire
duration of the storm with wind speeds ranging from calm to 18 m/s and
significant wave heights approaching 7 m.

3.1. Wave grouping effects

Wind waves appecar in groups; i.e., higher waves occur successively in
separated sequences. This phenomenon is well-known to scasoned sailors
and can sometimes be seen in wind wave recordings. Apart from being
a confirmed natural phenomenon, the existence of wave groups tends to
challenge the conventional notion that wave data can be considered as a
stationary process.

Wave data analysis, aimed at studying wave group characteristics, has
been confined to identifying individual groups by counting the number of
wave heights that exceed a prescribed height. A group is simply measured
by a group length which is the number of waves counted. While statistics
of the group lengths can be assessed, efforts have been generally directed
at correlating the mean group length with spectral properties of the data
{14].

In a wavelet transform analysis of wave data, an examination of a
contour plot of resulting wavelet spectrum of waves shows distinct energy
density parcels in the time-frequency domain. Figure 1 presents a simulta-
neous plot of sea surface elevations and the contours of their corresponding
wavelet spectrum. The contour patches shown in the figure clearly indi-
cate wave groupings that are visibly identifiable in the time series. The
boundary of a wave group can be readily specified by setting an appropri- -
ate threshold energy level in the wavelet spectrum. Essentially there is a
localized time-frequency energy spectrum for each group of waves, which
is potentially more informative than previous approaches.

Based on the boundary specified for each wave group from the wavelet
spectrum, we have at least four relevant group parameters to characterize
a wave group:

(1) The group time length, t,, which is the difference between the max-
imum and minimum time scales the group boundary covered.

(ii) The total group enecrgy, E,, which is an integration of the local
wavelet spectrum over the time length ¢,.

ii1) The dominant group frequency, f,, which is the frequency of the -
g q Y, Jy q y
peak energy over the time length ¢,
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(iv) The dominant group wave height, h,, which can be obtained from
the time series as the maximum trough-to-crest wave height over
the time length t,.

The variability of these parameters indicates that wave groups are ap-
parently diverse, irregular, nonperiodic, and independent from cach other.
The formidable task is to determine the significance and usefulness of these
parameters. Here we consider a simplified approach of forming two nor-
malized parameters:

¢ normalized group time length = ¢, * f,,, and

e normalized total group energy = Eg/hZ.
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Figure 2. A scatter plot of normalized total group energy versus nor-
malized group time length, the solid line is a linear least square fit for
the data.

A scatter plot of these two normalized parameters, shown in Figure 2,
indicates a fairly well-defined linear relationship. As the normalized total
group energy is a measure of energy content, and the normalized group
time length is a measure of the number of waves with possibly the same
peak energy frequency, Figure 2 implies, that higher energy content in a
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wave group tends to generate more waves in the group. This interesting
result, while intuitively understandable, is new.

A scatter plot of averages of dominant group wave heights versus sig-
nificant wave heights is shown in Figure 3. The significant wave height,
defined as the average of the highest one-third wave heights in the wave
record, is a familiar and widely-used parameter. For practical applications,
such as in engineering design, mean dominant group wave height would be
more pertinent than the significant wave height. Figure 3 shows that sig-
nificant wave heights are slightly less than the averages of dominant group
wave heights.
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Figure 3. A scatter plot of mean group wave height versus significant-
wave height.

3.2. How do wind waves grow?

The wind and waves measurements in the SWADE program introduced
a new data collection practice, namely, that wind and waves werc mea-
sured at the same resolution simultaneously. Previously, wind data were
merely collected as hourly averages. The availability of simultaneous high-
resolution wind and wave data has provided an unparalleled opportunity -
to directly examine detailed wind action on waves, especially during wave
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growth.

How do wind waves grow? It is a question that several generations of
scientists have addressed. In addition to the carly work of Jeffreys [11] and
Ursell’s [23] famous “nothing very satisfying” summary, modern conceptual
perceptions of wind waves primarily stem from the theoretical conjectures
of Phillips [17], Miles [15], and Hasselmann [8]. The current proliferation
of numerical wave models is basically developed from these early theories.
Numerous measurements of wave energy spectra with average wind speeds
have been conducted for the validation and possible enhancement of the
available models. Now with the latest SWADE measurements and the
advancement of wavelet transforms, we are able to examine wind wave
processes from new perspectives.
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Figure 4. The time series of wind speeds corresponding to the wave
data of Figure 1 and its respective wavelet spectrum.

One way of analyzing simultaneously recorded wind and wave measure-
ments is through cross wavelet spectrum analysis. Figure 4 shows a part
of the wind speeds and their wavelet spectrum corresponding to the wave
data of Figure 1. There is no obvious relationship between the two time
series that we can deduce from the top parts of Figures 1 and 4. However, if
we consider the wavelet spectrum, a tract of high energy density contours
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appears in both spectra over the same frequency ranges and during the
time when highest wave heights occurred in the wave time series. Quali-
tatively we might infer that wind and waves interact immediately during
wave growth.
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Figure 5. Plots of three peak-energy frequency components versus

time, The five subgraphs from top down are, respectively, wavelet spec-
trum for wind speeds, wavelet spectrum for waves, the real part, the
imaginary, and the phase of coherence.

To see if we can verify this inference quantitatively, we calculate the
cross wavelet spectrum and their corresponding wavelet coherence for the
simultaneous wind and wave data. The results, expressed either in contour
or three-dimensional plots, are rather intricate and perplexing. It is not at
all clear what we can meanfully deduce. If, however, we plot the results for
individual frequencies, we can see some interesting results. Figure 5, corre-
sponding to the same data of Figures 1 and 4, is an example of what these
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plots can tell us. The five separate graphs in Figure 5 display, respectively
from top down, the wavelet spectrum for wind, the wavelet spectrum for
waves, the real part, the imaginary part, and the phase of wavelet coher-
ence. All of the plots contain the three frequency components of 0.1131,
0.1199, and 0.127 Hz for which the energy density is highest.

Note that in Figure 1 there are five groups of waves that can be iden-
tified from the wavelet spectrum. In the second graph of Figure 5 in which
energy densities increase and decrease with respect to time, only three
stronger groups (i.e., at time marks 1570, 1630, and 1695) arc reflected
from the fluctations of these frequency components. The top graph of Fig-
ure 5 shows that the wavelet spectrum components for wind speeds exhibit
similar, but more, energy fluctations with time. Some of the fluctuations
correspond closely to those of the waves. By examining the bottom three
graphs of Figure 5, it shows quite clearly that for the three wave groups
identified with appreciable energy contents, the real part of their coherence
is close to! 1, their imaginary part close to 0, and their phase is also close
to 0. Therefore, during wave growth, the frequency components for peak
wave energy between wind and waves are inherently in phase. Wave groups
constitute the basic elements of wind wave processes, and the wave growth
are primarily taking place within the wave group.

As the growth of wind waves is an extremely complicated process,
the above results contribute still qualitatively toward an understanding of
the nature of how do waves grow. While we are accustomed to correlate
wave growth with “average” wind speeds, the results presented here clearly
show that waves are in fact responding to wind speeds instantly. Further
detailed studies may challenge or counter more familiar notions of wind
waves. Using cross wavelet spectrum analysis not only introduces new
data analysis techniques, it may also leads to new courses of exploration.

3.3. Detecting breaking waves

Wave breaking is a familiar phenomenon that occurs intermittently
and ubiquitously on the ocean surface. It is visible from the appearance
of the whitecaps, yet it can not be readily measured with customary in-
struments. Wave breaking has been recognized as playing a crucial role
in accurate estimations of the exchange of gases between the ocean and
the atmosphere [24] and in the transfer of momentum from wind to the
ocean surface [1]. Most of the practical works on wave breaking (2], both

! Unlike the Fourier cross spectrum analysis where averaging can be used to avoid
coherence being identically one, we have to use the real and imaginary parts of the
coherence separately here, since their sum, the coherence, is indeed identically one in
this formulation. On the other hand, this approach successfully substantiates the use
of the co- and quadrature spectra [19] to signify their ”in phase” and "out of phase”
properties, respectively.
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in the laboratory and in the field, have been done with specialized methods
based on radar reflectivity, optical contrast, or acoustic output of the ocean
surface. Here we show that with the help of wavelet spectra [12], instead
of using specialized measurement devices, a basic wave-breaking criterion
can be easily implemented to wind wave time series to distinguish breaking
from non-breaking waves. This simple and fairly efficient approach can
be readily applied to indirectly estimate wave breaking statistics from any
available time series of wind-generated waves.
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Figure 6. A sample plot of a time series of wind waves, same as Figure
1, with possible breaking waves marked by o’s and x’s indicating different
high frequency ranges Aw, : w, defined by the A values given at the top
of the figure.

One of the most frequently used approaches for the study of wave break-
ing is the use of a limiting value of the wave steepness beyond which the
surface cannot be sustained [13]. Alternatively, assuming a linear dispersion
relationship, the wave surface will break when its downward acceleration
exceeds a limiting fraction, v, of the gravitational acceleration, g, that is
ao? = ~vg. The quantity ao? can be calculated for a time series of wave
data since the local wave amplitude, a, is available from the measured time-
series while the local wave frequency, o, can be obtained from the wavelet
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spectrum. In classical studies, it has generally been assumed that v = 0.5.
Recent laboratory studies [10] have shown that -y is closer to 0.4. Some field
measurements [9] further indicate that the value of <y should even be lower.
In this study we chose to follow the laboratory results and use v = 0.4.
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Figure 7. Plot of the percentage of breaking waves with respect to
wind speeds. The o's and x’s are the same as defined in Figure 6.

Since the wavelet transform provides an equivalent time-frequency spec-
trum, Wx(w,t), for the wind wave time series, then there is a localized
frequency spectrum at each data point, X(¢;), given by

(I)i(w) = [Wx(w’t)]t=2."

It is not immediately clear which frequency should be used for ¢ in calcu-
lating ac?. Because breaking events are generally associated with the high
frequency part of the spectrum, for each X (¢;) we chose to define a o; as
the average frequency [20] over the high frequency range, Aw, : wy, of the
localized spectrum at ¢t = ¢; as

i P Ri() ]
ag; = wn
Ao, P, (w)dw

where w,, is the localized frequency at the energy peak, wy, is the cut-off
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frequency, and A is a number greater than 1 that denotes the start of the
high frequency range beyond w,. The exact location of this high frequency
range has not been clearly defined. Considering this range as corresponding
to the familiar equilibrium range, one frequently used value of A has been
1.35 [7).

To test this approach, Figure 6 presents an illustration of the analysis
where estimated breaking waves are marked on the same time series seg-
ment given in figure 1. The x’s and 0’s represent the results with a high
frequency range between 1.15 and 1.35 times, respectively, of the local peak
energy frequency, w,, and cut-off frequency, w,. While the A values of 1.15
or 1.35 has been chosen rather arbitrarily for comparisons, they are clearly
not always recognizing the same breaking waves. In general with the same
cut-off frequency, the lower end of the frequency range farther away from
the local peak frequency, i.e. large A value, would yield higher local average
frequency o and more breaking waves. Therefore an exploration of break-
ing waves could potentially serve to resolve the definition of the well-known
but still not yet well-defined equilibrium range. Figures 7 present plots of
overall percentages of breaking waves from all the data analyzed in this
study as a function of wind speed. While the data points are scattered
considerably, there is an approximate linear trend indicating an increase
in the percentage of breaking waves with an increase in wind speed. The
results shown in Figure 7 are in general accord with various available ob-
servations [9]. According to these results, breaking waves become prevalent
when wind speeds exceed 10 m/s.

At the present, the limiting fraction of downward wave acceleration
from the gravitational acceleration, v, and the parameter locating the lo-
“cal equilibrium range beyond local peak frequency, A, are both tentative.
Therefore, the wavelet transform approach that leads to these results is

useful, convenient, and also exploratory. Perhaps a better simultaneous - -

measurement of wind-wave time series and wave breaking would suffice to
substantiate the approach. Unfortunately operational and sufficient instru-
ment for this simple purpose is still lacking.

§4. Concluding Remarks

We anticipate two groups of readers who might be benefit from this
paper, namely, those interested in wavelet applications and those interested
in wind wave studies. As this is a first attempt in applying the wavelet
transform to wind waves, the results are inevitably primitive. We hope we
have succeeded at least in demonstrating the rich potentials for wavelet
analysis. There are many important analysis issues that must yet be ad-
dressed, including rigorous basis for the cross wavelet spectrum analysis
which we have used here. For the wind wave studics, wavelets certainly
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provide ample opportunities for data analysis. From the encouraging re-
sults we reported here, we are justified in being optimistic.
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